Na Geometria, a área corresponde à medida da superfície, geralmente, calculada pela multiplicação da base pela altura. Já o perímetro é resultado da soma dos lados de uma figura.
Teste seus conhecimentos com 10 questões que criamos sobre o tema e tire suas dúvidas com a resolução após o gabarito.
Questão 1
Calcule o perímetro das figuras planas a seguir de acordo com as medidas dadas em cada alternativa.
a) Quadrado com lado de 20 cm.
Resposta correta: 80 cm
P = 4.L
P = 4. 20
P = 80 cm
b) Triângulo com dois lados de 6 cm e um lado com 12 cm.
Resposta correta: 24 cm
P = 6 + 6 + 12
P = 24 cm
c) Retângulo com 20 cm de base e 10 cm de altura
Resposta correta: 60 cm
P = 2(b+ h)
P = 2(20 + 10)
P = 2.30
P = 60 cm
d) Losango com 8 cm de lado.
Resposta correta: 32 cm
P = 4.L
P = 4 . 8
P = 32 cm
e) Trapézio com base maior de 8 cm, base menor de 4 cm e lados de 6 cm.
Resposta correta: 24 cm
P = B + b + L1 + L2
P = 8 + 4 + 6 + 6
P = 24 cm
f) Círculo com raio de 5 cm.
Resposta correta: 31,4 cm
P = 2 π . r
P = 2 π . 5
P = 10 π
P = 10 . 3,14
P = 31,4 cm
Questão 2
Calcule a área das figuras planas a seguir de acordo com as medidas dadas em cada alternativa.
a) Quadrado com lado de 20 cm.
Resposta correta: A = 400 cm2
A = L2
A = (20 cm)2
A = 400 cm2
b) Triângulo com 6 cm de base e 12 cm de altura.
Resposta correta: A = 36 cm2
A = b.h/2
A = 6.12/2
A = 72/2
A = 36 cm2
c) Retângulo com 15 cm de base e 10 cm de altura
Resposta correta: 150 cm2
A = b.h
A = 15 . 10
A = 150 cm2
d) Losango com diagonal menor de 7 cm e diagonal maior de 14 cm.
Resposta correta: 49 cm2
A = D.d/2
A = 14 . 7/2
A = 98/2
A = 49 cm2
e) Trapézio com base menor de 4 cm, base maior de 10 cm e altura de 8 cm.
Resposta correta: 56 cm2
A = (B + b) . h/2
A = (10 + 4) . 8/2
A = 14 . 8/2
A = 112/2
A = 56 cm2
f) Círculo com raio de 12 cm.
Resposta correta: 452,16 cm2
A = π . r2
A = π . 122
A = 144.π
A = 144 . 3,14
A = 452,16 cm2
Questão 3
Juliana possui dois tapetes de mesma área. O tapete quadrado possui lado de 4 m e o tapete retangular tem altura de 2 m e base de 8 m. Qual tapete apresenta o maior perímetro?
a) O tapete quadrado
b) O tapete retangular
c) Os perímetros são iguais
Resposta correta: b) O tapete retangular.
Para saber qual o maior perímetro devemos efetuar o cálculo com os valores dados para os dois tapetes.
Tapete quadrado:
P = 4.L
P = 4.4 m
P = 16 m
Tapete retangular:
P = 2(b+h)
P = 2(8+2)
P = 2.10
P = 20 m
Portanto, o tapete retangular possui o maior perímetro.
Questão 4
Carla, Ana e Paula estão prontas para iniciar um jogo. Observando a maneira como se organizaram, podemos notar que suas posições formam um triângulo.
Sabendo que o triângulo tem 30 cm de perímetro e Carla está a 8 cm de distância de Ana e Ana está a 12 cm de distância de Paula, qual a distância de Carla e Paula?
a) 10 cm
b) 11 cm
c) 12 cm
d) 13 cm
Resposta correta: a) 10 cm.
O perímetro de uma figura é a soma dos seus lados. Como o enunciado nos dá o valor do perímetro e de dois lados do triângulo, substituímos na fórmula e encontramos a distância entre Carla e Paula, que corresponde ao terceiro lado do triângulo.
P = a + b + c
30 cm = 8 cm + 12 cm + c
30 cm = 20 cm + c
c = 30 cm – 20 cm
c = 10 cm
Portanto, a distância entre Carla e Paula é de 10 cm.
Questão 5
Seu João resolveu fazer um cercado em sua fazenda com o intuito de plantar algumas verduras. Para impedir que os animais comam seu plantio, ele decidiu cercar a região com arame.
Sabendo que a parte do terreno que seu João utilizou forma um quadrilátero com os lados 50 m, 18 m, 42 m e 16 m, quantos metros de arame seu João precisa comprar para cercar o terreno?
a) 121 m
b) 138 m
c) 126 m
d) 134 m
Resposta correta: c) 126 m.
Se a parte do terreno escolhida para plantar verduras é um quadrilátero de lados 50 m, 18 m, 42 m e 16 m, então a quantidade de arame utilizada pode ser calculada achando o perímetro da figura, pois ele corresponde ao seu contorno.
Como o perímetro é a soma dos lados de uma figura, basta somar os valores dados na questão.
P = 50 m + 18 m + 42 m + 16 m
P = 126 m
Portanto, seu João precisa de 126 metros de arame.
Questão 6
Márcia decidiu pintar uma das paredes de seu quarto com uma cor diferente. Para isso, ela escolheu uma lata de tinta rosa, cujo rótulo diz que o rendimento do conteúdo é 20 m2.
Se a parede que Márcia pretende pintar é retangular, com as medidas de 4 m de comprimento e 3 m de altura, quantas latas de tinta Márcia precisará comprar?
a) uma lata
b) duas latas
c) três latas
d) quatro latas
Resposta correta: a) uma lata.
Para saber a área que será pintada devemos multiplicar a base pela altura.
A = 4 m x 3 m
A = 12 m2
Observe que a parede de Márcia tem uma área de 12 m2 e uma lata de tinta é suficiente para pintar 20 m2, ou seja, mais do que ela precisa.
Portanto, Márcia deverá comprar apenas uma lata de tinta para pintar a parede do seu quarto.
Questão 7
Laura comprou uma peça retangular de tecido e cortou 10 retângulos iguais com altura de 1,5 m e base de 2 m. Qual a área a peça original?
a) 15 m2
b) 25 m2
c) 30 m2
d) 40 m2
Resposta correta: c) 30 m2.
Com os valores dados no enunciado, vamos primeiramente calcular a área de um dos retângulos formados por Laura.
A = b . h
A = 2 m . 1,5 m
A = 3 m2
Já que foram feitos 10 retângulos iguais, então a área da peça inteira é 10x a área de um retângulo.
A = 10 . 3 m2
A = 30 m2
Portanto, a área da peça original é 30 m2.
Questão 8
Pedro está pintando o muro de sua casa, que mede 14,5 m2. Sabendo que Pedro pintou 24 500 cm2 hoje e pretende deixar o restante para amanhã, qual a área, em metros quadrados, que Pedro falta pintar?
a) 10,05 m2
b) 12,05 m2
c) 14, 05 m2
d) 16,05 m2
Resposta correta: b) 12,05 m2.
Para resolver essa questão devemos iniciar convertendo a unidade de área de cm2 para m2.
Se 1 metro tem 100 cm, então 1 metro quadrado tem 100 . 100 cm, que é igual a 10 000 cm2. Sendo assim, dividindo a área dada por 10000 encontraremos o valor em m2.
A = 24 500/10 000 = 2,45 m2
Agora, subtraímos a área pintada da área total do muro para encontrar a região que ainda falta pintar.
14,5 m2 – 2,45 m2 = 12,05 m2
Sendo assim, resta para Pedro pintar 12,05 m2 do muro.
Questão 9
Lucas decidiu vender seu carro e, para conseguir um comprador rapidamente, resolveu colocar um anúncio no jornal da cidade. Sabendo que é pedido R$ 1,50 por centímetro quadrado de publicidade, quanto Lucas teve que pagar por um anúncio retangular de base 5 cm e altura de 4 cm?
a) R$ 15,00
b) R$ 10,00
c) R$ 20,00
d) R$ 30,00
Resposta correta: d) R$ 30,00.
Primeiramente, devemos calcular a área do anúncio criado por Lucas.
A = b.h
A = 5 cm . 4 cm
A = 20 cm2
O preço pago pode ser encontrado multiplicando a área pelo preço pedido.
Preço = 20 . R$ 1,50 = R$ 30,00
Sendo assim, o anúncio de Lucas custará R$ 30,00.
Questão 10
Paulo decidiu aproveitar o espaço não utilizado do seu quarto para construir um banheiro. Conversando com um arquiteto, Paulo descobriu que para o cômodo com vaso sanitário, pia e chuveiro ele precisaria de uma área mínima de 3,6 m2.
Respeitando as indicações do arquiteto, qual das figuras abaixo representa a planta correta para o banheiro de Paulo?
a) 2,55 m x 1,35 m
b) 1,55 m x 2,25 m
c) 1,85 m x 1,95 m
Resposta correta: c) 1,85 m x 1,95 m.
Para responder a essa pergunta vamos calcular a área das três figuras
A = 2,55 x 1,35
A = 3,4425 m2
A = 1,55 x 2,25
A = 3,4875 m2
A = 1,85 x 1,95
A = 3,6075 m2
Sendo assim, a melhor escolha para o banheiro de Paulo é a opção com 1,85 m x 1,95 m.
Leia sobre:
- Área e perímetro
- Área de figuras planas
- Perímetro de figuras planas
Veja também
- Área de Figuras Planas - Exercícios
- Área e Perímetro
- Áreas de Figuras Planas
- Exercícios de Porcentagem
- Exercícios sobre medidas de comprimento
- Área do Quadrado
- Área do Retângulo: como calcular, fórmula e exercícios
- Trava-Línguas